Approve all creditworthy customers

Transaction Categorisation API

Transaction categorisation API


Transaction Categorisation API

Identify income, liabilities and 100+ other transaction categories


Verify income

Identify income for customers with regular or irregular income sources, including part-time and freelance jobs.

Explore income categories

Verify liabilities

Identify all recently received loans and loan repayments. Ideal in cases where full credit history is not available.

Explore liability categories

Build credit reports

Use the 100+ categories of income and expense types to build the ideal credit report to capture all important and risk-critical behaviours.

Explore all categories


Optimised for Risk

Our categorisation engine is built to recognise the purpose of a transaction based on its description. The engine was built to replace manual bank statement analysis by credit specialists as well as improve risk-critical areas, where traditional Personal Finance Management (PFM) categorisation engines underperform—it was built with clear focus on risk and financial behaviour. 

"Bigbank found Nordigen categorisation to be 15x more precise than manual analysis of bank statements"

Read more about Bigbank case study

Categorisation example.png

How categorisation works?

Nordigen engine uses the transaction's details field to match keywords, phrases and patterns and identify category of the payment or transfer.

Use cases - categorisation.png

Typical use-cases

Extracting categories from raw transaction data can be valuable across departments. This means being able to get "missing" data for real time scoring, pre-scoring as well as for customer segmentation or analytics.



  • Simple API, supports multiple file formats
    Our RESTful API supports a wide array of file formats, including our own JSON format, as well as transaction files (JSON, XML) directly from account aggregators such as Yodlee, Instantor, Kontomatik, Pich Technologies, Saltedge as well as bank statements in PDF formats in selected countries (e.g. Latvia, Lithuania, Estonia, Finland). 

  • Hosted on the secure Amazon Web Services cloud
    Security and scalability are our top priorities. For this reason we've deployed our solution on AWS (servers located in Dublin, Ireland) to ensure that your data processed securely and the service is always running. 

  • Multiple geographies and languages supported
    Our categorisation engine currently supports transactions from any country in the world.

  • Identify 150+ categories in every statement
    We have created an extensive category tree of income and expense categories. This gives a lot of freedom to data science and credit modelling teams to build inventive decision rules and identify financial behaviours previously hidden within the data. 

  • High categorisation rate

    To deliver the best results, we employ multiple keyword matching techniques alongside prediction algorithms and continuously teach the engine. We employ a number of internal data operators to label transactions, test the categorised data as well as spot and fix false-positives.

  • Applied Machine Learning
    We work with multiple lenders in any country where we operate, which allows us to learn from multiple parties at the same time and make improvements to all our customers. We measure our success in categorisation rate (% of transactions that are identified and not fall into the category "Other") and error rate (% of transactions that were categorised incorrectly).



Nordigen categorisation API supports different types of input files and formats, including JSON and XML files from the most popular account aggregators and banking APIs. The example below reveals how the categorisation works in real life and what is the expected output.

JSON Input.png

Input file (JSON)


Output file (JSON) with categories


Interested in a live demo? Let's talk.